

Designation: D 2270 - 04

Designation: 226/91 (95)

Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 and 100°C¹

This standard is issued under the fixed designation D 2270; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This practice² covers the procedures for calculating the viscosity index of petroleum products, such as lubricating oils, and related materials from their kinematic viscosities at 40 and 100°C.

Note 1—The results obtained from the calculation of VI from kinematic viscosities determined at 40 and 100°C are virtually the same as those obtained from the former VI system using kinematic viscosities determined at 37.78 and 98.89°C .

- 1.1.1 *Procedure A*—For petroleum products of viscosity index up to and including 100.
- 1.1.2 *Procedure B*—For petroleum products of which the viscosity index is 100 or greater.
- 1.2 This standard does not apply to petroleum products with kinematic viscosities less than 2.0 mm²/s (cSt) at 100°C. Table 1 given in this practice applies to petroleum products with kinematic viscosities between 2 and 70 mm²/s (cSt) at 100°C. Equations are provided for calculating viscosity index for petroleum products having kinematic viscosities above 70 mm²/s (cSt) at 100°C.

Note 2—1 $cSt = 1 \text{ mm}^2/\text{s} = 10^{-6}\text{m}^2/\text{s}$.

1.2.1 In cases where kinematic viscosity data are not available at temperatures of 40 and 100°C, an estimate may be made of the viscosity index by calculating the kinematic viscosity at temperatures of 40 and 100°C from data obtained at other temperatures. Such viscosity index data may be considered as suitable for information only and not for specification purposes. See Test Method D 341, Annex A1.

- 1.3 The kinematic viscosity values are determined with reference to a value of 1.0034 mm²/s (cSt) at 20.00°C for distilled water. The determination of the kinematic viscosity of a petroleum product shall be carried out in accordance with Test Methods D 445, IP 71, ISO 3104, or ISO 2909.
- 1.4 The values stated in SI units are to be regarded as the standard.

2. Referenced Documents

- 2.1 ASTM Standards: 3
- D 341 Test Method for Viscosity-Temperature Charts for Liquid Petroleum Products
- D 445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity)
- D 1695 Terminology of Cellulose and Cellulose Derivatives 2.2 *ISO Standards*:
- ISO 2909 Petroleum Products—Calculation of Viscosity Index from Kinematic Viscosity⁴
- ISO 3104 Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity⁴
- 2.3 Energy Institute Standard:
- IP 71 Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity⁵

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *viscosity index*, *n*—an arbitrary number used to characterize the variation of the kinematic viscosity of a petroleum product with temperature.

¹ This practice is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.07 on Flow Properties.

In the IP, this practice is under the jurisdiction of the Standardization Committee and issued under the fixed designation IP 226. The final number indicates the year of last revision.

Current edition approved Nov. 1, 2004. Published November 2004. Originally approved in 1964. Last previous edition approved in 1998 as D 2270–93(1998).

² Supporting data (Metrication of Viscosity Index System Method D 2270) have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02-1009.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.

⁵ Available from Energy Institute, 61 New Cavendish St., London, WIG 7AR, U.K.

TABLE 1 Basic Values for L and H for Kinematic Viscosity in 40 to 100°C System

Kinematic Viscosity			Kinematic														
at 100°C,	L	Н	Viscosity at 100°C, mm ² /s	L	Н	Viscosity at 100°C, mm ² /s	L	Н	Viscosity at 100°C, mm ² /s	L	Н	Viscosity at 100°C, mm ² /s	L	Н	Viscosity at 100°C, mm ² /s	L	Н
mm²/s (cSt)			(cSt)														
2.00	7.994 8.640	6.394 6.894	7.00	78.00	48.57 49.61	12.0	201.9	108.0	17.0	369.4	180.2	24.0 24.2	683.9	301.8	42.5 43.0	1935	714.9
2.10 2.20	9.309	7.410	7.10 7.20	80.25 82.39	50.69	12.1 12.2	204.8 207.8	109.4 110.7	17.1 17.2	373.3 377.1	181.7 183.3	24.2	694.5 704.2	305.6 309.4	43.0	1978 2021	728.2 741.3
2.30	10.00	7.944	7.30	84.53	51.78	12.3	210.7	112.0	17.3	381.0	184.9	24.6	714.9	313.0	44.0	2064	754.4
2.40	10.71	8.496	7.40	86.66	52.88	12.4	213.6	113.3	17.4	384.9	186.5	24.8	725.7	317.0	44.5	2108	767.6
2.50	11.45	9.063	7.50	88.85	53.98	12.5	216.6	114.7	17.5	388.9	188.1	25.0	736.5	320.9	45.0	2152	780.9
2.60 2.70	12.21 13.00	9.647 10.25	7.60 7.70	91.04 93.20	55.09 56.20	12.6 12.7	219.6 222.6	116.0 117.4	17.6 17.7	392.7 396.7	189.7 191.3	25.2 25.4	747.2 758.2	324.9 328.8	45.5 46.0	2197 2243	794.5 808.2
2.80	13.80	10.87	7.80	95.43	57.31	12.8	225.7	118.7	17.8	400.7	192.9	25.6	769.3	332.7	46.5	2288	821.9
2.90	14.63	11.50	7.90	97.72	58.45	12.9	228.8	120.1	17.9	404.6	194.6	25.8	779.7	336.7	47.0	2333	835.5
3.00	15.49	12.15	8.00	100.0	59.60	13.0	231.9	121.5	18.0	408.6	196.2	26.0	790.4	340.5	47.5	2380	849.2
3.10	16.36 17.26	12.82	8.10	102.3	60.74	13.1	235.0 238.1	122.9	18.1	412.6	197.8	26.2	801.6	344.4	48.0	2426	863.0 876.9
3.20 3.30	18.18	13.51 14.21	8.20 8.30	104.6 106.9	61.89 63.05	13.2 13.3	241.2	124.2 125.6	18.2 18.3	416.7 420.7	199.4 201.0	26.4 26.6	812.8 824.1	348.4 352.3	48.5 49.0	2473 2521	890.9
3.40	19.12	14.93	8.40	109.2	64.18	13.4	244.3	127.0	18.4	424.9	202.6	26.8	835.5	356.4	49.5	2570	905.3
3.50	20.09	15.66	8.50	111.5	65.32	13.5	247.4	128.4	18.5	429.0	204.3	27.0	847.0	360.5	50.0	2618	919.6
3.60 3.70	21.08 22.09	16.42 17.19	8.60 8.70	113.9 116.2	66.48 67.64	13.6 13.7	250.6 253.8	129.8 131.2	18.6 18.7	433.2 437.3	205.9 207.6	27.2 27.4	857.5 869.0	364.6 368.3	50.5 51.0	2667 2717	933.6 948.2
3.80	23.13	17.13	8.80	118.5	68.79	13.8	257.0	132.6	18.8	441.5	209.3	27.6	880.6	372.3	51.5	2767	962.9
3.90	24.19	18.77	8.90	120.9	69.94	13.9	260.1	134.0	18.9	445.7	211.0	27.8	892.3	376.4	52.0	2817	977.5
4.00	25.32	19.56	9.00	123.3	71.10	14.0	263.3	135.4	19.0	449.9	212.7	28.0	904.1	380.6	52.5	2867	992.1
4.10	26.50	20.37	9.10	125.7	72.27	14.1	266.6	136.8	19.1	454.2	214.4	28.2	915.8	384.6 388.8	53.0	2918	1007
4.20 4.30	27.75 29.07	21.21 22.05	9.20 9.30	128.0 130.4	73.42 74.57	14.2 14.3	269.8 273.0	138.2 139.6	19.2 19.3	458.4 462.7	216.1 217.7	28.4 28.6	927.6 938.6	393.0	53.5 54.0	2969 3020	1021 1036
4.40	30.48	22.92	9.40	132.8	75.73	14.4	276.3	141.0	19.4	467.0	219.4	28.8	951.2	396.6	54.5	3073	1051
4.50	31.96	23.81	9.50	135.3	76.91	14.5	279.6	142.4	19.5	471.3	221.1	29.0	963.4	401.1	55.0	3126	1066
4.60 4.70	33.52 35.13	24.71 25.63	9.60 9.70	137.7 140.1	78.08 79.27	14.6 14.7	283.0 286.4	143.9 145.3	19.6 19.7	475.7 479.7	222.8 224.5	29.2 29.4	975.4 987.1	405.3 409.5	55.5 56.0	3180 3233	1082 1097
4.80	36.79	26.57	9.80	142.7	80.46	14.8	289.7	146.8	19.8	483.9	226.2	29.6	998.9	413.5	56.5	3286	1112
4.90	38.50	27.53	9.90	145.2	81.67	14.9	293.0	148.2	19.9	488.6	227.7	29.8	1011	417.6	57.0	3340	1127
5.00	40.23	28.49	10.0	147.7	82.87	15.0	296.5	149.7	20.0	493.2	229.5	30.0	1023	421.7	57.5	3396	1143
5.10	41.99	29.46	10.1	150.3	84.08	15.1	300.0	151.2	20.2	501.5	233.0	30.5	1055	432.4	58.0	3452	1159
5.20 5.30	43.76 45.53	30.43 31.40	10.2 10.3	152.9 155.4	85.30 86.51	15.2 15.3	303.4 306.9	152.6 154.1	20.4 20.6	510.8 519.9	236.4 240.1	31.0 31.5	1086 1119	443.2 454.0	58.5 59.0	3507 3563	1175 1190
5.40	47.31	32.37	10.4	158.0	87.72	15.4	310.3	155.6	20.8	528.8	243.5	32.0	1151	464.9	59.5	3619	1206
5.50	49.09	33.34	10.5	160.6	88.95	15.5	313.9	157.0	21.0	538.4	247.1	32.5	1184	475.9	60.0	3676	1222
5.60 5.70	50.87 52.64	34.32 35.29	10.6 10.7	163.2 165.8	90.19 91.40	15.6 15.7	317.5 321.1	158.6 160.1	21.2 21.4	547.5 556.7	250.7 254.2	33.0 33.5	1217 1251	487.0 498.1	60.5 61.0	3734 3792	1238 1254
5.80	54.42	36.26	10.7		92.65	15.8		161.6	21.6		257.8	34.0	1286	509.6	61.5	3850	1270
5.90		37.23	10.9		93.92	15.9	328.3		21.8		261.5	34.5	1321	521.1	62.0	3908	1286
6.00		38.19	11.0	173.9		16.0	331.9	164.6	22.0	585.2	264.9	35.0	1356	532.5	62.5	3966	1303
6.10 6.20	59.74 61.52	39.17 40.15	11.1	176.6 179.4	96.45	16.1	335.5 339.2	166.1 167.7	22.2 22.4	595.0 604.3	268.6	35.5 36.0	1391 1427	544.0 555.6	63.0	4026 4087	1319 1336
6.20		40.15	11.2 11.3	179.4		16.2 16.3	342.9	167.7 169.2	22.4		275.8	36.0 36.5	1464	555.6 567.1	63.5 64.0	4087 4147	1355
6.40		42.14	11.4	184.9	100.2	16.4	346.6	170.7	22.8		279.6	37.0	1501	579.3	64.5	4207	1369
6.50		43.18	11.5		101.5	16.5		172.3	23.0	633.6	283.3	37.5	1538	591.3	65.0	4268	1386
6.60	69.16	44.24	11.6	190.4	102.8	16.6	354.1	173.8	23.2	643.4	286.8	38.0	1575	603.1	65.5	4329	1402
6.70 6.80	71.29 73.48	45.33 46.44	11.7 11.8	193.3 196.2	104.1 105.4	16.7 16.8	358.0 361.7	175.4 177.0	23.4 23.6	653.8 663.3	290.5 294.4	38.5 39.0	1613 1651	615.0 627.1	66.0 66.5	4392 4455	1419 1436
6.90		47.51	11.9	199.0	106.7	16.9		178.6	23.8		297.9	39.5	1691	639.2	67.0	4517	1454
												40.0	1730	651.8	67.5	4580	1471
												40.5	1770	664.2	68.0	4645	1488
												41.0 41.5	1810 1851	676.6 689.1	68.5 69.0	4709 4773	1506 1523
												42.0	1892	701.9	69.5	4839	1523
															70.0	4905	1558

- 3.1.1.1 *Discussion*—For oils of similar kinematic viscosity, the higher the viscosity index the smaller the effect of temperature on its kinematic viscosity.
- 3.1.1.2 *Discussion*—Viscosity index is also used in Terminology D 1695 in a definition unrelated to this one.

4. Significance and Use

- 4.1 The viscosity index is a widely used and accepted measure of the variation in kinematic viscosity due to changes in the temperature of a petroleum product between 40 and 100° C.
- 4.2 A higher viscosity index indicates a smaller decrease in kinematic viscosity with increasing temperature of the lubricant.
- 4.3 The viscosity index is used in practice as a single number indicating temperature dependence of kinematic viscosity.

5. Procedure A—Oils of Viscosity Index Up to and Including 100

- 5.1 Determine the kinematic viscosity of the sample at 40 and 100°C in accordance with Test Method D 445, ISO 3104, or IP 71.
 - 5.2 Calculation:
- 5.2.1 If the kinematic viscosity of the oils at 100° C is less than or equal to 70 mm^2 /s (cSt), extract from Table 1 the corresponding values for L and H. Measured values that are not listed, but are within the range of Table 1, may be obtained by linear interpolation. The viscosity index is not defined and may not be reported for oils of kinematic viscosity of less than 2.0 mm²/s (cSt) at 100° C.
- 5.2.2 If the kinematic viscosity is above 70 mm²/s (cSt) at 100° C, calculate the values of L and H as follows:

$$L = 0.8353 Y^2 + 14.67 Y - 216 \tag{1}$$

$$H = 0.1684 Y^2 + 11.85 Y - 97 (2)$$

where:

- L = kinematic viscosity at 40°C of an oil of 0 viscosity index having the same kinematic viscosity at 100°C as the oil whose viscosity index is to be calculated, mm²/s (cSt).
- $Y = \text{kinematic viscosity at } 100^{\circ}\text{C of the oil whose viscosity}$ index is to be calculated, mm²/s (cSt), and
- H = kinematic viscosity at 40°C of an oil of 100 viscosity index having the same kinematic viscosity at 100°C as the oil whose viscosity index is to be calculated mm²/s (cSt).
- 5.2.3 Calculate the viscosity index, VI, of the oil as follows:

$$VI = [(L - U)/(L - H)] \times 100$$
 (3)

where:

- $U = \text{kinematic viscosity at } 40^{\circ}\text{C of the oil whose viscosity index is to be calculated mm}^{2}/\text{s (cSt)}.$
- 5.2.4 Calculation Example—Measured kinematic viscosity at 40°C of the oil whose viscosity index is to be calculated = 73.30 mm²/s (cSt); kinematic viscosity at 100°C of the oil whose viscosity index is to be calculated = 8.86 mm²/s (cSt):

From Table 1 (by interpolation) L = 119.94

From Table 1 (by interpolation) H = 69.48

Substituting in Eq 3 and rounding to the nearest whole number:

$$VI = [(119.94 - 73.30)/(119.94 - 69.48)] \times 100 = 92.43$$
 (4)

$$VI = 92 (5)$$

5.3 ASTM DS 39b, Viscosity Index Tables for Celsius Temperatures, ³ is based on the above calculation and may be used instead of 5.2-5.2.4.

6. Procedure B—Oils of Viscosity Index of 100 and Greater

- 6.1 Determine the kinematic viscosity of the sample at 40 and 100°C in accordance with Test Method D 445, ISO 3104, or IP 71.
 - 6.2 Calculation:
- 6.2.1 If the kinematic viscosity of the oil at 100°C is in the range of 2 to 70 mm²/s (cSt), extract the corresponding value for *H* from Table 1. Measured values that are not listed, but are within the range of Table 1, can be obtained by linear interpolation. The viscosity index is not defined and may not be reported for oils of kinematic viscosity of less than 2.0 mm²/s (cSt) at 100°C.
- 6.2.2 If the measured kinematic viscosity at 100° C is greater than 70 mm^2 /s (cSt), calculate the value of H as follows:

$$H = 0.1684 Y^2 + 11.85 Y - 97 (6)$$

where:

- Y = kinematic viscosity at 100°C of the oil whose kinematic viscosity is to be calculated, mm²/s (cSt), and
- H = kinematic viscosity at 40°C of an oil of 100 viscosity index having the same kinematic viscosity at 100°C as the oil whose viscosity index is to be calculated mm²/s (cSt).
- 6.2.3 Calculate the viscosity index, VI, of the oil as follows:

$$VI = [((antilog N) - 1)/0.00715] + 100$$
 (7)

where:

$$N = (\log H - \log U)/\log Y,\tag{8}$$

or

$$Y^{N} = H/U \tag{9}$$

where:

- U = kinematic viscosity at 40°C of the oil whose viscosity index is to be calculated mm²/s (cSt).
- 6.2.4 Calculation Example:
- 6.2.4.1 Measured kinematic viscosity at 40° C of the oil whose viscosity index is to be calculated = $22.83 \text{ mm}^2/\text{s}$ (cSt); kinematic viscosity at 100° C of the oil whose viscosity index is to be calculated = $5.05 \text{ mm}^2/\text{s}$ (cSt):

From Table 1 (by interpolation) H = 28.97Substituting by Eq 8 (by logarithms):

$$N = [(\log 28.97 - \log 22.83)/\log 5.05] = 0.14708 \tag{10}$$

Substituting in Eq 7 and rounding to the nearest whole number:

$$VI = [((\text{antilog } 0.14708) - 1)/0.00715] + 100$$
 (11)
= $[(1.40307 - 1)/0.00715] + 100 = 156.37$

TABLE 2 Precision for Procedure A

		VI	= 0		VI = 100				
Kinematic Viscosity at 100°C mm ² /s	Repeata	bility, r	Reproducibility, R		Repeatability, r		Reproducibility, R		
ut 100 0 11111 /0	Formulated	Base Oil	Formulated	Base Oil	Formulated	Base Oil	Formulated	Base Oil	
4	0.98	2.31	5.77	6.75	0.73	1.73	4.32	5.05	
6	0.71	1.68	4.20	4.91	0.40	1.94	2.35	2.75	
8	0.57	1.35	3.38	3.95	0.30	0.70	1.75	2.05	
15	0.45	1.06	2.66	3.11	0.20	0.48	1.19	1.39	
30	0.39	0.92	2.29	2.68	0.14	0.33	0.82	0.96	
50	0.36	0.85	2.11	2.47	0.11	0.26	0.65	0.76	

TABLE 3 Precision for Procedure B

		VI =	100	VI = 200					
Kinematic Viscosity at 100°C mm ² /s	Repeata	bility, r	Reproduc	ibility, R	Repeata	bility, r	Reproducibility, R		
at 100 0 11111 70	Formulated	Base Oil	Formulated	Base Oil	Formulated	Base Oil	Formulated	Base Oil	
4	0.50	1.18	2.94	3.44	0.77	1.82	4.54	5.31	
6	0.37	0.87	2.18	2.55	0.57	1.34	3.35	3.92	
8	0.31	0.74	1.84	2.15	0.48	1.13	2.82	3.30	
15	0.23	0.55	1.37	1.61	0.36	0.84	2.11	2.46	
30	0.19	0.44	1.11	1.30	0.29	0.68	1.71	2.00	
50	0.17	0.40	0.99	1.16	0.26	0.61	1.52	1.78	

6.2.4.2 Measured kinematic viscosity at 40° C of the oil whose viscosity index is to be calculated = $53.47 \text{ mm}^2/\text{s}$ (cSt); kinematic viscosity at 100° C of the oil whose viscosity index is to be calculated = $7.80 \text{ mm}^2/\text{s}$ (cSt):

From Table 1, H = 57.31

Substituting in Eq 8 (by logarithms):

$$N = [(\log 57.31 - \log 53.47)/\log 7.80] = 0.03376$$
 (12)

Substituting in Eq 7 and rounding to the nearest whole number:

$$VI = [((antilog 0.03376) - 1)/0.00715] + 100$$

$$= [(1.08084 - 1)/0.00715] + 100 = 111$$
(13)

6.3 ASTM DS 39b³—Viscosity Index Tables for Celsius Temperatures is based on the above calculation and may be used instead of 6.2 through 6.2.4.

7. Report

- 7.1 Report the viscosity index to the nearest whole number. When the number is exactly halfway between the nearest two whole numbers, round to the nearest even number. For example, 115.5 should be reported as 116.
- 7.2 The test report shall contain at least the following information:
 - 7.2.1 A reference to this standard,
- 7.2.2 The type and complete identification of the product tested,

- 7.2.3 The result of the test,
- 7.2.4 Whether procedure A or procedure B was used,
- 7.2.5 Any deviation, by agreement or otherwise, from the procedure specified, and
 - 7.2.6 The date of the test.

8. Precision and Bias

- 8.1 The calculation of viscosity index from kinematic viscosities at 40 and 100°C is exact, and no precision limits can be assigned to this calculation.
- 8.2 The precision of a viscosity-index value depends on the precision of the two independent kinematic viscosity values from which it is derived. The results of two viscosity-index calculations shall be considered suspect if the values of the kinematic viscosities differ by more than the amounts quoted for repeatability or reproducibility as given in Test Method D 445 or ISO 3104. The precision levels given in given in Tables 2 and 3 for a probability level of 95 % are based entirely on the precision levels given in Test Method D 445 and ISO 3104 for base and formulated oils. They give an indication of the precision of the viscosity index attributed to the precision of kinematic viscosity given in Test Method D 445 and ISO 3104.

9. Keywords

9.1 kinematic viscosity; viscosity index

APPENDIXES

(Nonmandatory Information)

X1. VISCOSITY INDEX CALCULATIONS FROM KINEMATIC VISCOSITIES AT NON-STANDARD TEMPERATURES

X1.1 In certain cases, it is of interest to obtain the VI of an oil when conditions prevent the use of the standard temperatures of 40 and 100° C. An estimate may be made by calculating the kinematic viscosity at 40 and 100° C from data obtained at other temperatures. Reference should be made to Test Method D 341 for the suitable equations. The kinematic viscosity data used should preferably be taken from temperatures near the

standard values and as widely separated as possible.

X1.2 Viscosity index values of an oil calculated from non-standard data as discussed above should be considered as suitable for information only and not desirable for specification purposes.

X2. ANOTHER COMPUTATIONAL METHOD

X2.1 The exact computational method for the calculation of viscosity index is defined in Sections 5 and 6 of this practice. However, computation by computer or programmable calculator may be desired. This appendix describes one widely used method.

X2.2 The calculation of viscosity index requires:

X2.2.1 Input of kinematic viscosity data at 40 and 100°C.

X2.2.2 Calculation of L and H corresponding to the kinematic viscosity at 100°C.

X2.2.3 Calculation of the viscosity index using equations in Sections 5 and 6 of this practice.

X2.3 Values of L and H can be determined using computer software and the coefficients and equations stored in Table X2.1. In this set of sixteen equations, the errors in individual values of L and H so calculated are believed not to exceed 0.1%. For a given value of Y, select the pair of equations whose range includes this value of Y and calculate directly the values of L and H.

X2.4 With the given values of Y and U and the calculated values of L and H corresponding to Y from Table X2.1, the

viscosity index is calculated directly using:

X2.4.1 (Eq 3) where $U \ge H$ or

X2.4.2 (Eq 7) and (Eq 8) where $U \le H$ as is described in Section 6 of this practice.

X2.5 An example of these methods is as follows: given kinematic viscosity at $40^{\circ}\text{C} = 73.50 \text{ mm}^2/\text{s}$ (cSt), and kinematic viscosity at $100^{\circ}\text{C} = 8.860 \text{ mm}^2/\text{s}$ (cSt).

X2.5.1 As described in X2.3, the equations stored in memory which include Y = 8.860 are:

$$L = 0.41858 Y^2 + 16.1558 Y - 56.040$$
 (X2.1)

$$H = 0.05794 Y^2 + 10.5156 Y - 28.240$$
 (X2.2)

X2.5.1.1 From the given value of $Y = 8.860 \text{ mm}^2/\text{s}$ (cSt):

$$L = 119.9588 (X2.3)$$

$$H = 69.4765$$
 (X2.4)

X2.5.2 Since $U \ge H$:

Viscosity index =
$$[(L - U)/(L - H)] \times 100$$
 (X2.5)

X2.5.2.1 For the data in X2.5.1:

$$VI = \frac{119.9588 - 73.50}{119.9588 - 69.4765} \times 100 = 92.030 = 92$$
 (X2.6)

TABLE X2.1 Coefficients of Quadratic Equations

Y min	Y max	а	b	С	d	е	f					
2.0	3.8	1.14673	1.7576	-0.109	0.84155	1.5521	-0.077					
3.8	4.4	3.38095	-15.4952	33.196	0.78571	1.7929	-0.183					
4.4	5.0	2.5000	-7.2143	13.812	0.82143	1.5679	0.119					
5.0	6.4	0.10100	16.6350	-45.469	0.04985	9.1613	-18.557					
6.4	7.0	3.35714	-23.5643	78.466	0.22619	7.7369	-16.656					
7.0	7.7	0.01191	21.4750	-72.870	0.79762	-0.7321	14.610					
7.7	9.0	0.41858	16.1558	-56.040	0.05794	10.5156	-28.240					
9.0	12	0.88779	7.5527	-16.600	0.26665	6.7015	-10.810					
12	15	0.76720	10.7972	-38.180	0.20073	8.4658	-22.490					
15	18	0.97305	5.3135	-2.200	0.28889	5.9741	-4.930					
18	22	0.97256	5.2500	-0.980	0.24504	7.4160	-16.730					
22	28	0.91413	7.4759	-21.820	0.20323	9.1267	-34.230					
28	40	0.87031	9.7157	-50.770	0.18411	10.1015	-46.750					
40	55	0.84703	12.6752	-133.310	0.17029	11.4866	-80.620					
55	70	0.85921	11.1009	-83.19	0.17130	11.3680	-76.940					
70	Up	0.83531	14.6731	-216.246	0.16841	11.8493	-96.947					

 $L = a Y^2 + b Y + c$

 $H = d Y^2 + e Y + f$

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).